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bstract

n this article, the primary three-parameter Weibull cumulative distribution function (cdf) of the critical stress provoking failure in a brittle material
or a uni-axially and uniformly tensioned area �A is derived from 3- and 4-point bending test data. The model proposed finds application in the
haracterization of ceramics and glasses, and is intended as an initial step to be extended to different practical cases in future applications, as for
nstance, element design and local models in fracture mechanics, with previous consideration of the randomly distributed crack orientations. A

omparison of the results provided by the model proposed with those found using another one referred to in the literature, demonstrates good
greement between both, whereas the former simplifies the convergence procedure and can be applied for the assessment of data obtained from
ifferent test geometries and types. Thus, the suitability of the new approach is confirmed.

2010 Elsevier Ltd. All rights reserved.
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. Introduction and motivation

As the strength of brittle materials exhibits high scatter, a
tatistical consideration of failure in form of a cumulative dis-
ribution function (cdf) should be used for its characterization.
- and 4-point bending tests are widely used to determine this
unction experimentally. The resulting function clearly depends
n the geometry of the tested samples. Thus, the so-called size
ffect has to be taken into account when the experimentally
btained function is used to calculate the probability of failure
f a mechanical or structural component of much greater dimen-
ions compared to the ones of the samples used in experiments
nd presenting local variation of the stress state. Furthermore,
he cdf obtained should be related to an area subjected to uni-
orm stress as this function is subsequently used in finite element
alculations assuming the stress state in one cell to be constant.

hus, a relationship has to be established between the cdf of

ailure resulting for the variable stress distribution of 3- or 4-
oint bending tests currently used and that for a reference area

∗ Corresponding author. Tel.: +34 985 18 20 54; fax: +34 985 18 20 55.
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nder constant stress. This reference area, related to the dimen-
ions and the stress state of the sample tested, is deduced under
he assumption that the material strength can be described by a
hree-parameter Weibull distribution function which is widely
sed to evaluate failure test data from bending tests. As the
erein derived reference area depends on the stress level associ-
ted to failure the three-parameter Weibull cdf cannot be directly
etermined from the test results by a simple change of the scale
arameter. Instead, the reference area has to be considered for
ach data point individually to finally determine the cdf of a
ni-axially tensioned area �A.

In foregoing work1 a reference area has been deduced
o account for the variable stress state and the size effect
imultaneously. However, in the evaluation of test results this
eference area was used as a constant value although dif-
erent reference areas resulting from different failure stresses
re valid for each data point. Furthermore, the values for the
ocation and shape parameters were obtained fitting directly
he raw data to a three-parameter Weibull cdf. Thus, those

arameters do not correspond to the uni-axially and uniformly
ensioned area. Though the model proposed in Ref. 1 provides
n acceptable approximate solution for engineering applica-
ions, it is not fully consistent from a statistical point of

dx.doi.org/10.1016/j.jeurceramsoc.2010.11.007
mailto:afc@uniovi.es
dx.doi.org/10.1016/j.jeurceramsoc.2010.11.007


452 C. Przybilla et al. / Journal of the European Ceramic Society 31 (2011) 451–460

σ                       σ

Δ A

v
w

r
O
a
t
t
e
r
o
t
c
(

c
w
T
t
m
o
t
c
j
r
l
t
t
f

2

o
e
o
W

F

w
n
e
l

b
f

L 1L 0 L 0
F
2

F
2

σ

t

w

x

Fig. 2. 4-point bending test.
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Fig. 1. Uni-axially tensioned area �A.

iew, constituting one of the main motivation of the present
ork.
As this work is mainly concerned with glass, fracture occur-

ing on the side surfaces of the glass beams is not accounted for.
ne reason is the existence of two different crack populations

s the finishing of the side surfaces is different from the one of
he lower and upper surfaces of a glass plate. The considera-
ion of surface cracks competing with cracks originated at the
dge cuts results in a highly complex problem being statistically
ecognized as that denoted confounded data. Since in the case
f ceramics it is correct to consider also the side surfaces, for
he sake of completeness we add the extended equations for the
orresponding reference areas in the appendix (Eqs. (A.1) and
A.2)).

Frequently, simplifications are made when using the Weibull
df as it can be verified in the literature2,3 and design codes4,
here the simpler two-parameter Weibull distribution is used.
his cdf is easier to handle because it obviates the considera-

ion of a threshold stress, but the obtained failure predictions
ay be too conservative5. In the case of 4-point bending tests

ther authors6 find it sufficiently accurate to use only the cen-
ral uniformly tensioned lower surface as reference area without
onsidering the two zones adjacent to the beam supports sub-
ected to a linearly increasing stress state. Although this should
esult in a conservative cdf, it seems necessary to take the whole
ower surface of the beams into account because large cracks in
he zones adjacent to the supports exposed to stress levels lower
han that in the midspan may become determinant and lead to
ailure.

. Probabilistic model and proposed methodology

Let us assume that the cdf describing the failure probability
f a uni-axially tensioned area �A, as shown in Fig. 1, can be
xpressed in terms of the uni-axially acting stress σ in form
f a three-parameter Weibull distribution function FΔA(σ) (see
eibull7)

ΔA(σ) = 1 − exp

{
−
(

σ − λ

δ

)β
}

; σ ≥ λ, (1)

here λ is the location parameter or threshold stress below which
o fracture occurs, δ the scale parameter and β the shape param-
ter. This distribution is theoretically justified by the weakest

ink principle.

If Expr. (1) is used to calculate the failure probability of a glass
eam under 4-point bending (see Fig. 2) it should be noticed that
racture normally starts on the tensioned lower surface of a beam.

A
f
f
s

ccordingly, the surface under tension of the beam is divided
nto cells having each an equal area of ΔAi.

In this case, the size effect must be taken into account.
enoting Ps,ΔA the probability of survival for an area �A, the
robability of survival Ps,i for an area ΔAi = n · ΔA (n ∈R+)
ecomes

s,i = [Ps,ΔA

]n = [1 − FΔA(σ)]
ΔAi
ΔA

= exp

{
−ΔAi

ΔA

(
σ − λ

δ

)β
}

; σ ≥ λ. (2)

Assuming independence between the cells, the failure prob-
bility, Pf,beam, of the whole beam is calculated as follows:

f,beam(σ) = 1 −
∏

i

Ps,i. (3)

This can be rewritten as

Pf,beam(σ) = 1 − exp

(
log
∏

i

Ps,i

)

= 1 − exp

(∑
i

log Ps,i

)

= 1 − exp

(∑
i

log

[
exp

{
−ΔAi

ΔA

(
σ(x) − λ

δ

)β
}])

= 1 − exp

(∑
i

{
−ΔAi

ΔA

(
σ(x) − λ

δ

)β
})

.

(4)

As the tension along the width w of the beam is assumed to
e constant, the area of one cell i is expressed as ΔAi = dx · w.
ow the summation in Eq. (4) can be extended as an integral.
s in the three-parameter Weibull distribution the probability of

ailure for a tension σ(x) < λ is zero, the lower integration bound

or the lateral areas becomes L0 · λ/σ, where σ is the maximum
tress acting on the lower surface of the beam (see Fig. 2). Thus,
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Pf,beam(σ) = 1 − exp

⎡
⎢⎢⎣2 ·

L0∫
L0·λ/σ

⎧⎪⎪⎨
⎪⎪⎩−dx · w

ΔA

⎛
⎜⎝

σ

L0
· x − λ

δ

⎞
⎟⎠

β

= 1 − exp

⎡
⎢⎢⎢⎣− w

ΔA

⎛
⎜⎜⎜⎝2 ·

∣∣∣∣∣∣∣∣∣

(
σ

L0
· x − λ

)β+1

δβ · σ

L0
· (β + 1)

∣∣∣∣∣∣∣∣∣

L0

L0·λ/

= 1 − exp

[
− w

ΔA

(
2 · L0 · (σ − λ)

σ · (β + 1)
+ L1

)
·
(

σ

For 3-point bending, L1 vanishes and the equation reduces to

f,beam(σ)=1− exp

[
− w

ΔA

(
2 · L0 · (σ−λ)

σ · (β + 1)

)
·
(

σ − λ

δ

)β
]

.

(6)

If the parameters λ, β and δ were known those expressions
ould allow predicting the failure probability of a beam under
-point bending or 3-point bending, respectively. In general, the
roblem arises the other way round. Data results of bending
ests in the form of failure stresses exist and the aim consists
n obtaining an analytical expression to describe the material
trength for the general case of a uniformly tensioned area �A.
ased on the independence assumption and the weakest link
rinciple, the cdf can be analytically derived from this analytical
xpression for any other elementary area. Since the results of the
ending tests are referred to a uni-axial stress varying along the
ength of the beam, we need to refer these results to a reference
rea Aref subjected to the constant stress σ acting on the central
art of the beam having the same failure probability as the entire
eam. Replacing ΔAi by Aref in formula (2) the probability of
ailure for this area Aref is given by the following expression:

f,Aref
(σ) = 1 − exp

[
−Aref

ΔA

(
σ − λ

δ

)β
]

. (7)

Equaling expressions (5) and (7), the area Aref results in

ref = w ·
[

2 · L0

(β + 1)
·
(

1 − λ

σ

)
+ L1

]
(8)

r

ref = w · 2 · L0

(β + 1)
·
(

1 − λ

σ

)
(9)

or 4-point and 3-point bending, respectively, whereas expres-
ion (8) is equal to the expression obtained in Ref. 1. Note
hat due to the dependence of Aref on σ, expressions (5)–(7) do

ot correspond anymore to three-parameter Weibull distribution
unctions. Expressions accounting also for the tensioned side
urfaces of the beam are given in the appendix (Eqs. (A.1) and
A.2)). The equations to calculate the effective surface (herein

t
w
p
fi
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L0+L1∫
L0

{
−dx · w

ΔA

(
σ − λ

δ

)β
}⎤⎥⎥⎦

1 ·
(

σ − λ

δ

)β

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

)β
]

.

(5)

enoting reference area) in the WeibPar programme8, which pro-
ides the material parameter evaluation for possible use in the
ARES9 reliability calculation, and Ref. 10 coincide with Eqs.

A.1) and (A.2) in case of the two-parameter Weibull distribution
� = 0). This confirms the generality of the approach.

In the case of experiments, any failure stress σf,k of the sorted
ampled data is assigned to an accumulated failure probability
iven by11

f,k,beam = k − 0.3

n + 0.4
, (10)

here n is the sample size and k is the kth element.
Using Eq. (2) we identify any of these accumulated fail-

re probabilities, Pf,k,beam, with the failure probabilities, Pf,k,ΔA,
esulting for an area �A under constant stress, whereas the size
f �A, e.g. the size of the finite elements being used in further
tructural analysis, is arbitrary but unlike Aref its value is constant
or all stress levels

f,k,ΔA = 1 − (1 − Pf,k,beam)ΔA/Aref,k . (11)

The correctness of Eq. (11) can be easily stated if Pf,k,beam in
q. (11) is substituted by the analytical expression (5), and Aref,k
y Eq. (8) that proves Pf,k,ΔA being equal to the searched distribu-
ion function (1). As Aref,k depends on the unknown parameters

and β these have to be estimated. A first approximation is
btained adjusting the experimental data (Pf,k,beam versus σf,k)
o a three-parameter Weibull distribution. This is accomplished
y linear regression plotting ln( − ln(1 − Pf)) versus ln(σ − λ)
nd fitting the points to a straight line with slope β and intercept
β · ln(δ) 11, whereas λ is found by maximizing R2. Subse-

uently, a reference area Aref,k(σ) is calculated for each data
oint and the failure probability Pf,k,ΔA valid for �A is obtained
or each tension σf,k using Eq. (11). Again linear regression is
pplied to fit these shifted data to a three-parameter Weibull
istribution function resulting now in the searched function (1).

The final value of β referred to �A should be smaller than

hat from the initial fitting of the experimental raw data. This
ill normally be accompanied by a change in the threshold
arameter λ. Note that the initially assumed λ, corresponds to a
ctitious Weibull distribution that fits approximately the experi-
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Fig. 3. Flow diagram of method (βn, λn: parameters obtained in actual

ental raw data. In this way, the iteration procedure starts using
spurious parameter λ allowing to get the real Weibull primary
istribution parameters (among them the true parameter λ) after
onvergence. Accordingly, the true parameter λ does not change
ith the scale effect.
To achieve the intended precision, an iteration process is

epeated until the β- and λ-values used to calculate Aref become
qual to those obtained by linear regression of the data points
eferred to �A. For illustration, a flow diagram of the method
pplied is shown in Fig. 3. In this paper the linear regression
ethod is used instead of the maximum-likelihood because for
three-parameter Weibull distribution, the latter is known to

ave problems in estimating the location parameter. More pre-
isely, this leads on one hand to infinite values of the likelihood,
nd on the other hand to lack of regularity conditions, so that
special and complicated methods should be used, see Castillo
nd Hadi12,13.

It has to be mentioned that the iteration process is not neces-
ary when the simplified two-parameter Weibull cdf with λ = 0
s used for evaluating bending tests, because in this case Aref
oes not depend on the stress level but only on the geometry of
he test specimen and the scale parameter β.
. Application to test results

For validation of the method proposed we apply it to simu-
ated data of 3- and 4-point bending tests and to real results of

a
4
a
e

ion step; βn−1, λn−1: parameters obtained in foregoing iteration step).

-point bending tests of monolithic glass beams. Furthermore,
he method proposed herein is compared with a least squares
est fit method reported by Gross14 evaluating in both cases the
ame failure data of 3- and 4-point bending tests on silicon car-
ide and silicon nitride, respectively. For the iteration procedure,
atlab and the fitting proposed in Ref. 15 are used.

.1. Application to simulated data

.1.1. 4-point bending
To simulate 4-point bending tests of beams with dimensions

0 = 50 mm, L1 = 150 mm, w = 100 mm, a material with Weibull
arameters λ = 42 MPa, β = 2.6 and δ = 130 MPa valid for a uni-
xial tensioned area �A = 100 mm2 has been assumed. Choosing
small value for �A in relation to the stressed lower surface of

he beam, a good fit of the left-hand tail of the Weibull distri-
ution function (see Fig. 5) is obtained. This is deliberate as in
eneral one is dealing with low failure probabilities in the differ-
nt practical cases. Furthermore 100 random numbers between
and 1 representing fictitious failure probabilities Pf,beam are

enerated. Inserting all these values in Eq. (5) and solving for
, 100 values of the fracture stress (i.e. the maximum stress

n the midspan of the beam which could also provoke fracture

t another location with lower stress level) are obtained for a
-point bending test series. These fracture stresses are treated
s failure data by assigning a cumulative failure probability to
ach of them by means of expression (10). With the proposed
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Table 1
Percentiles 4-point bending.

Pf 1% 5% 10%

Exact value [Mpa] 64.16 83.48 96.71
Mean [Mpa] 64.20 83.79 97.45
Standard deviation [Mpa] 0.76 3.65 6.99
Relative bias [%] 0.06 0.37 0.76
RMSE [MPa] 0.76 3.66 7.03
Maximal value [MPa] 66.96 97.03 125.55
M
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o
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b
1
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F
m
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Fig. 4. Regression lines for simulated data of 4-point bending tests.

ethod we evaluate the simulated experimental data resulting
n a Weibull cdf which can be contrasted directly with the cdf
ssumed initially in the simulation process.

Fig. 4 represents the regression lines for the shifted simulated
ata points and the assumed initial material referred to an area
A in a Weibull probability paper. The cumulative distribution
unctions for the same simulation are shown in Fig. 5. A zoom
n the left-hand tail of the cdfs is depicted in Fig. 6.
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inimal value [MPa] 62.39 76.94 84.88
afety coefficient [] 0.96 0.86 0.77

The performed simulations allow us to observe that the
btained parameters β, λ and δ do not coincide with those of the
nitial material used for the simulation of the bending tests. A
etter verification of the procedure is the comparison among the
st, 5th and 10th percentiles corresponding to failure probabili-
ies of 1%, 5% and 10%, respectively. By simulation 100 datasets
re generated each consisting of 100 values of the fracture stress.
or each data set the percentiles are calculated. In Table 1 the
ean values and standard deviations for these percentiles are

ummarized together with the exact percentile-values for the
ssumed material. The relative bias is calculated as follows:

elative bias = |exact value − mean|
exact value

. (12)

Additionally, the root mean squared error (RMSE), the max-
mal and minimal values of the percentiles are presented. The
atio exact value/maximal value provides a confident safety coef-
cient which should be considered when using the determined
df for engineering calculations. Once the failure stress corre-
ponding to a permitted failure probability is determined, this
ailure stress has to be reduced by multiplying it by the safety
oefficient.

It is obvious that a very good fit for low failure probabilities
s achieved, as in the simulations only data points up to a failure
robability of about 3% for the cdf referred to an area �A are
btained. But also for a failure probability of 10% a quite low
elative bias of 0.76% is still attained, though for this failure
robability the standard deviation is about 9 times greater than
or a failure probability of 1%. Thus, care is advised in front of
xtrapolation, i.e. using the cdf in regions not covered by data
oints.

.1.2. 3-point bending
Another simulation has been carried out for 3-point bending

ests. This time, smaller dimensions are used in the simu-
ation: L0 = 50 mm, w = 30 mm, �A = 9 mm2. The parameters
= 42 MPa, β = 2.6 and δ = 328 MPa correspond to the same
aterial as in the previous simulation taking into account the

ize effect by the conversion of the scale parameter δ

2 = δ1 ·
(

ΔA1
)1/β

. (13)

ΔA2

Fig. 7 represents the regression lines for the shifted simulated
ata points and the assumed initial material referred to an area
A in a Weibull probability paper. In Fig. 8 the cumulative dis-
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Fig. 7. Regression lines for simulated data of 3-point bending tests.
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Table 2
Percentiles 3-point bending.

Pf 1% 5% 10%

Exact value [Mpa] 97.91 146.65 180.03
Mean [Mpa] 97.97 147.86 183.39
Standard deviation [Mpa] 2.14 9.40 21.11
Relative bias [%] 0.06 0.82 1.86
RMSE [MPa] 2.15 9.47 21.38
Maximal value [MPa] 104.85 196.65 309.49
M
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Fig. 10 depicts the Weibull probability plot for the shifted data
points referred to an area �A while Fig. 11 represents the fitted
cdf of fracture stress referred to an area �A and the data points
of failure stress referred to the area Aref.

0.001

0.002

0.005

0.01

0.02
0.03
0.04

P
f [ 

]

β = 2.8
λ = 40.94
δ = 127.3
R  = 0.9812

Shifted test data (Δ A)
ig. 8. Cumulative distribution functions for simulated data of 3-point bending
ests.

ribution functions for the same simulation are shown. A zoom
n the left-hand tail of the cdfs is depicted in Fig. 9.

The evaluation of the 1st, 5th and 10th percentiles results in
elative biases of 0.06%, 0.82% and 1.86%, respectively, sup-
lying slightly worse results than in the 4-point bending tests
imulation (see Table 2). Due to a higher dispersion of the

btained curves the proposed safety coefficient adopts smaller
alues than in the 4-point bending tests. On its turn, the RMSE
s about 3 times higher than in the 4-point bending test results.

50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stress [MPa]

P
f [ 

]

Simulated test data (A )

Shifted test data (Δ A)

Fit of shifted test data

Assumed initial material

ig. 9. Left-hand tail of the cumulative distribution functions for 3-point bending
ests (the horizontal lines mark the range of values obtained for the percentiles
f Table 2). F
inimal value [MPa] 91.91 131.43 151.70
afety coefficient [] 0.93 0.75 0.58

.2. Application to test results

Four-point bending tests on 25 beams of monolithic float
lass (tin side under tension) were carried out exhibiting the
ame dimensions as the ones in the simulation of 4-point bending
ests (L0 = 50 mm, L1 = 150 mm, w = 100 mm). The test results
re listed in Table B.1. Exemplarily, we use a value of 100 mm2

or �A representing a quadratic cell of 1 cm edge length. The
ata shifted by Eq. (11) fit well to a three-parameter Weibull cdf
ith parameters λ = 40.94 MPa, β = 2.80 and δ = 127.3 MPa.
The resulting scatter R2 = 0.9812 lies in the expected range.
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Fig. 10. Regression line for fracture stress of glass beams.
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Fig. 12. Regression lines for 4-point bending tests on silicon nitride14.
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Fig. 13. Cumulative distribution functions for 4-point bending tests on silicon
nitride14.

Table 3
Comparison with parameters obtained by Gross’ method.

Test data Approach R2 Sum of residuals squared

4-point bending Gross 0.9856 2193
(Table I of Ref. 14) Proposed 0.9929 3627
3-point bending Gross 0.9663 2478
(Table II of Ref. 14) Proposed 0.9695 2386
3-point bending Gross 0.9834 1435
(Table III of Ref. 14) Proposed 0.9823 1450
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.3. Comparison with Gross’ results

Gross14 proposed a least squares best fit method to adjust
ni-axial failure data to a three-parameter Weibull distribution
unction. Comparing his procedure with the method proposed
is scale parameter δGross (with unit MPa m2/�) can be trans-
ormed into our scale parameter δ (with unit MPa) referred to an
niformly tensioned area of �A by

= δGross

ΔA1/β
, (14)

hich signifies their parameter δGross is referred to an area �A of
m2. Eq. (14) is equivalent to that used in the WeibPar Manual8

o relate the Weibull material scale parameter (corresponding
o δGross referred to unit volume) to the Weibull characteristic
trength (corresponding to δ referred to �A).

So far we did not consider cracks on the side surfaces of
he beams as in glass the cracks on the lower and on the side
urfaces belong to different populations (different production
teps: lower surface produced by floating and the side surfaces by
utting) leading to the problem of confounded data which is quite
nvolved to account for. In the case of ceramics, all the surfaces
f the prismatic specimens, being machined or cut, belong to
he same crack population. For that reason, the stressed side
urfaces are to be included in the failure calculation. Since the
ata evaluated by Gross are related to ceramics, the evaluation
erformed also includes the stressed side surfaces.

As mentioned in Ref. 14, the data of silicon nitride (SNW-
000) are used for four point surface flaw analysis although
he fractures occurred due to volume flaws. So the material is
ot correctly characterized, but a direct comparison with Gross’
esults is possible.

Using Gross’ failure data of silicon nitride and silicon car-
ide (see Tables I–III of Ref. 14) the proposed method is applied,
ncluding the side surfaces in the calculation of Aref, to obtain

cdf valid for an area �A = 9 mm2. To compare both meth-
ds, the R2 of the regression lines in the Weibull paper plot and
he sum of residuals squared

∑k
j=1(σf,k,comp − σf,k)2

j
in the cdf

lot are calculated for both fits valid for ΔA, where σf,k,comp
s the fracture stress corresponding to the translated probability
f,k,ΔA computed by the determined cdf for �A. To evaluate the
um of residuals squared for the fit made by Gross the test data
oints are shifted by Eq. (11) using the Weibull parameters λ

nd β obtained by Gross for the calculation of the reference area
nd converting his scale parameter to a δ valid for the chosen
A = 9 mm2 by Eq. (14).
For the 4-point bending tests (Figs. 12 and 13) according to

2, the proposed method seems to provide slightly better results
hereas the sum of residuals squared (see Table 3) suggests

hat the method proposed by Gross is more accurate. This seems
ogical as the proposed method uses the linear regression method
iming at a maximum of R2 while Gross uses a least squares best
t method aiming at a minimum of the sum of residuals squared.

or the first 3-point bending test data (Table II of Ref. 14) the
roposed method gives better results although the difference in
he results is quite small. The corresponding regression lines and
dfs are represented in Figs. 14 and 15, respectively. Finally, the

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
log(σ − λ)

Fig. 14. Regression lines for 3-point bending tests on silicon carbide (transverse
annealed)14.



458 C. Przybilla et al. / Journal of the European Ceramic Society 31 (2011) 451–460

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stress [MPa]

P
f [ 

]

Proposed approach:
β = 4.91
λ = 164.4
δ = 365.86
R  = 0.9695

Gross´ approach:
β = 4.02
λ = 190
δ = 362.69
R  = 0.9663

Test data

Shifted test data (proposed)

Fit (proposed)

Shifted test data (Gross)

Fit (Gross)

Fig. 15. Cumulative distribution functions for 3-point bending tests on silicon
carbide (transverse annealed)14.
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Table 4
Geometry for data simulation.

Test arrangement w [mm] L0 [mm] L1 [mm]

3-point bending 30 50 –
4
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a
regression lines and cdfs are represented in Figs. 18 and 19,
respectively.
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ig. 16. Regression lines for 3-point bending tests on silicon carbide (longitu-
inal annealed)14.

esulting cdfs for the 3-point bending tests (Table III of Ref.
4) are almost coinciding and the values of R2 and the sum
f residuals squared differ only slightly (see Figs. 16 and 17).
hus, it can be concluded that both methods give acceptable

esults in the evaluation of uni-axial bending tests. An advantage
f the method presented here is the easier implementation as

he distribution function is reduced to a simple three-parameter

eibull cdf, which parameters can be easily found by linear
egression in a Weibull probability plot.
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ig. 17. Cumulative distribution functions for 3-point bending tests on silicon
arbide (longitudinal annealed)14.
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.4. Extension to the case of different-sized specimens

With the herein proposed method it is also possible to
oin experimental data from different-sized specimens or test
rrangements (e.g. 3- and 4-point bending) to obtain one dis-
ribution function describing the material. To demonstrate this,
material with parameters β = 2.6, λ = 42 MPa and δ = 130 MPa

eferred to an area �A of 100 mm2 is assumed for which the frac-
ure data of one 3-point bending and two 4-point bending tests are
imulated (dimensions in Table 4). For each test 100 data points
re generated and each data series fitted to a three-parametric
eibull-cdf. To adjust the three data series to one distribution

unction the mean values of λ and β for a first guess are used
nd fitting is achieved by linear regression method and iteration
s pointed out in the flow diagram (see Fig. 3). The resulting
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
log(σ − λ)

ig. 18. Three data series fitted to one cumulative distribution function - linear
egression.
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Fig. 19. Three data series fitted to one cumulative distribution function.
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. Conclusions

The herein proposed method enables us to deduce a cdf
haracterizing the material strength of a uniformly and uni-
xially tensioned surface element from bending tests directly.
o simplification is adopted concerning the reference area, since

onsidering only the central area as reference area when evaluat-
ng 4-point bending tests represents an approximation. Indeed,
he influence of the lateral areas and that of the varying side
tresses decrease when those are small in relation to the central
rea. But since large cracks in the lateral areas subjected to lower
tress levels than in the midspan may lead to failure, the whole
ower surface of the beam should be included in the failure cal-
ulation. What is more, for small specimens often the 3-point
ending test is employed and this obliges to consider the variant
tress state.

In this work only surface defects are considered, though the
ethod is also applicable to materials with volume flaws by sub-

tituting the expressions for the reference area by expressions
or a reference volume. Changing the expression for the refer-
nce area one can evaluate also other test arrangements than 3-
r 4-point bending tests.

The proposed procedure can also be applied to multiaxial
trength data, e.g. those obtained from ring on ring tests (see
STM C149916). In such a case, the expression for the refer-

nce area must be determined using a multiaxial stress model,
.g. Batdorf or PIA (principle of independent action) model17.
owever, the numerical effort to solve the problem will increase.
alem and Powers18, dealing with ring on ring tests, provide
n approximate solution of the effective surface for the simpli-
ed two-parameter Weibull distribution making use of the PIA
odel.
It is not apparent whether the proposed approach is always

onservative or not, as the fits obtained in the simulations pre-
ict higher or lower failure probabilities as the exact cdf of the
nitial material. For this reason, the use of safety coefficients is
uggested when resorting to the determined cdfs in engineering
esign.

Although the whole cumulative distribution function valid
or an area �A is deduced, only the left-hand tail in probabilis-
ic calculations is considered, as engineering cases are mostly
oncerned with failure probabilities below 5%. Extrapolation,
.e. use of the cdf in regions not covered by data points must be
erformed with care because, as can be seen in the diagrams,
he deviation of the obtained fits from the initial cdf can adopt
uite high values.

In comparison to Gross’ least squares best fit method similar
esults are obtained using the herein proposed method, whereas
he latter is easier to implement as the distribution function is
educed to a simple three-parameter Weibull cdf whose param-
ters can be easily found by linear regression in a Weibull
robability plot. Another advantage of the proposed method is
hat the deduced three-parameter Weibull cdf is directly appli-
able in finite element calculations or by choosing in the test
valuation an area �A equal to the one to be applied in finite

lement calculations or by transforming the determined scale
arameter δ by Eq. (13).
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ppendix A. Reference area in case of consideration of
he side surfaces

-point bending:

Aref = w ·
[

2 · L0

(β + 1)
·
(

1 − λ

σ

)
+ L1

]
+ L1 · t

(β + 1)
·
(
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+
(
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· 2 · L0 · t
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·
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dy

(A.1)

-point bending:

ref = 2 · L0

(β+1)
·

⎡
⎣w ·

(
1− λ

σ

)
+t ·
(

σ

σ−λ

)β

·
0.5t∫

0.5λt/σ

1

y

(
2

t
y− λ

σ

)(1+β)

dy

⎤
⎦

(A.2)

ppendix B. Failure data of bending tests

able B.1
-point bending – monolithic float glass.

pecimen number Failure load – F [N] Failure strength – σ [MPa]

1 4103 61.55
2 3735 56.03
3 3709 55.64
4 4091 61.37
5 4272 64.08
6 4282 64.23
7 3436 51.54
8 3373 50.60
9 4443 66.65
0 4352 65.28
1 4255 63.83
2 3587 53.81
3 3563 53.45
4 3993 59.90
5 3716 55.74
6 4345 65.18
7 4189 62.84
8 4739 71.09
9 3547 53.21
0 4697 70.46
1 4480 67.20
2 3116 46.74
3 4144 62.16
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